
1. Introduction to OOPs

Object-Oriented Programming (OOP) is a programming paradigm that organizes software design around
objects rather than functions and logic. An object represents a real-world entity and contains both data
and functions that operate on that data.

C++ is an object-oriented language that supports both procedural programming and object-oriented
programming, making it very powerful and flexible.

2. Need for OOPs

Traditional procedural programming becomes difficult to manage for large and complex programs. OOPs
helps to overcome these problems by:

 Improving code organization
 Reducing complexity
 Increasing reusability
 Making programs easier to understand and maintain

OOPs is especially useful in large software projects such as banking systems, games, operating systems,
and web applications.

3. Basic Terminologies in OOPs

Object

An object is a real-world entity such as a car, student, or employee. In programming, an object is an
instance of a class.

Class

A class is a blueprint or template for creating objects. It defines the data members and member functions.

Example
class Student {
 int roll;
 char name[20];
};

4. Features of OOPs

The main features of Object-Oriented Programming are:

1. Encapsulation

2. Abstraction
3. Inheritance
4. Polymorphism
5. Data Hiding
6. Message Passing

5. Encapsulation

Encapsulation is the process of binding data and functions together into a single unit called a class. It
protects data from unauthorized access.

Advantages of Encapsulation

 Improves data security
 Enhances modularity
 Makes code easy to manage

Example
class Account {
 private:
 int balance;
 public:
 void setBalance(int b) {
 balance = b;
 }
};

6. Data Hiding

Data hiding is closely related to encapsulation. It restricts direct access to data members using access
specifiers:

 private
 protected
 public

Data hiding ensures that sensitive data cannot be accessed directly from outside the class.

7. Abstraction

Abstraction means showing only essential features and hiding unnecessary details. It focuses on what an
object does, not how it does it.

Example

When using a car, we only know how to drive it, not the internal engine mechanism.

In C++, abstraction is achieved using:

 Classes
 Access specifiers
 Abstract classes

8. Inheritance

Inheritance allows one class to acquire the properties of another class. The existing class is called the
base class, and the new class is called the derived class.

Advantages

 Code reusability
 Reduced redundancy
 Easy maintenance

Example
class Animal {
 public:
 void eat() {}
};

class Dog : public Animal {
};

9. Types of Inheritance

1. Single Inheritance
2. Multiple Inheritance
3. Multilevel Inheritance
4. Hierarchical Inheritance
5. Hybrid Inheritance

Each type provides flexibility in code reuse.

10. Polymorphism

Polymorphism means many forms. It allows the same function name to behave differently based on
context.

Types of Polymorphism

1. Compile-time Polymorphism
2. Run-time Polymorphism

11. Compile-Time Polymorphism

Also called static polymorphism, achieved using:

 Function Overloading
 Operator Overloading

Function Overloading Example
int add(int a, int b);
float add(float a, float b);

12. Run-Time Polymorphism

Also called dynamic polymorphism, achieved using:

 Function overriding
 Virtual functions

Example
class Base {
 public:
 virtual void show() {}
};

13. Constructors

A constructor is a special member function that is automatically called when an object is created. It has
the same name as the class.

Types

 Default constructor
 Parameterized constructor
 Copy constructor

14. Destructor

A destructor is a special function that is called when an object is destroyed. It is used to release resources.

Syntax
~ClassName() {}

15. Access Specifiers

Access specifiers define the scope of class members:

 public – accessible everywhere
 private – accessible only inside class
 protected – accessible in derived classes

16. Message Passing

Objects communicate with each other by calling member functions. This is known as message passing.

Example
obj.function();

17. Advantages of OOPs

 Code reusability
 Easy debugging
 Better security
 Improved maintainability
 Real-world modeling

18. Limitations of OOPs

 Requires more memory
 Slower execution compared to procedural programs
 Complex design for small programs

19. Applications of OOPs

OOPs is widely used in:

 Game development
 Banking software
 GUI applications
 Web development

 Embedded systems

20. Conclusion

Object-Oriented Programming is a powerful programming approach that helps in designing efficient,
secure, and reusable software. C++ provides full support for OOPs concepts, making it suitable for both
small and large-scale applications. Understanding OOPs concepts is essential for becoming a skilled C++
programmer.

